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9.1 INTRODUCTION

To evaluate modern aircraft and aircraft systems requires an understanding of how
aerodynamic performance can be optimized. Performance specifications today go well beyond
point design specifications and depend 'heavily on optimization to fit specific tactical
requirements whether the vehicle is designed as an interceptor, an air superiority fighter, a
strategic airlifter, a strategic bomber, or for any other operational role. The goal is to
demand a performance efficiency covering the entire flight envelope that will meet the
operational need with the best overall combination of armament, engine, and airframe. The
F-14 and F-15 were the first generation of fighter aircraft to be designed and evaluated
within this approach. Newer fighter designs like the F-16, the F-18, the Tornado, and the
Mirage 2000 have been conceived with full cognizance of the need for optimized performance.

9.1.1 AIRCRAFT PERFORMANCE MODELS
The almost universally accepted mathematical model for aircraft performance is a point-mass
model; that is, we need only consider the forces acting on the center of gravity of the airplane.
But even this simple set of governing equations can be manipulated under a wide range of
assumptions. Bryson, Desai, and Hoffman (10.1:481ff) have conveniently catalogued several
of these approximations from an optimal control perspective. For our convenience, we will
lump these models into three categories:

1. Steady state approximation

2. Energy state approximation

3. Higher order optimal control approximations

In this chapter, we will consider all three of these models. However, due to the complexity
of higher order optimal control approximations we will limit ourselves to a conceptual
approach. :

9.1.2 NEED FOR NONSTEADY STATE MODELS

The classical approach to aircraft performance problems is a "static” or steady state one. For
this approximation, either true airspeed or altitude (or both) must be held constant.
Therefore, the model is inadequate for analyzing climb profiles, for example, of supersonic
aircraft. Both true airspeed and altitude change rapidly for such airplanes. Obviously, the
steady state approximation cannot cope satisfactorily with vehicles like the Space Shuttle
Orbiter which never achieves steady state flight.
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9.2 STEADY STATE CLIMBS AND DESCENTS .

Climbs and descents at constant true airspeed (dV/dt = 0) are a subset of problems associated
with performance optimization. They could be called "static” performance problems and, as
such, are useful as first order tools of analysis. For our purposes, they also serve as an
introduction to the energy state approximation.

8.2.1 FORCES ACTING ON AN ATRCRAFT IN FLIGHT
The forces acting on an aircraft in flight are conveniently resolved perpendicular and parallel
to the direction of flight, as shown in Figure 9.1.

HORIZON

_FRL
\

FIGURE 9.1 FORCES ACTING ON AN AIRCRAFT IN FLIGHT (2ERO
BANK ANGLE)

Perpendicular to the flight path

L - Wcos Y + F, sin (o + @,) = ma,

Where o is the angle of attack, ar is the thrust angle of incidence or the angular difference
between the thrust line and the fuselage reference line (FRL), and a, is the acceleration

perpendicular to the flight path.
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Parallel to the flight path

Fcos (& + 0y - D - Wsin Y = ma,
With the following relatively minor simplifying assumptions

o=0, a,=0, a, =0,

- that is angle of attack is small and the engines are closely aligned with the fuselage reference
line '

and recalling a, = -

these equations take on simpler, more recognizable forms.

L-WcosyY=0
9.1

- -— 3 -
F,-D-Wsin Y d -a':t
(9.2)

For purposes of examining how to maximize y (since we are analyzing climb performance),
true airspeed is held constant. At a constant true airspeed, dV/dt = 0. With this restriction,
Equation 9.2 becomes

F,-D=Wsin ¥

which gives a useful expression for gamma
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= gin™? F.-D |
, " o
(9.3)
F -D

Where n = is specific excess thrust, "specific” because we are examining the excess

thrust at that specific weight. By maximizing specific thrust, we will maximize the climb
angle, 7.

Now, multiplying by V on both sides gives

vofes
Vsein Y = 7

But V sin y is simply the rate of climb or rate of descent, as Flg-u:re 9.2 illustrates.

FIGURE 9.2 RATE OF CLIMB

=Vsin'Y=_(.F_”.:_£)_V

(9.4)
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This expression clearly shows that if net thrust is greater than drag, dh/dt is positive; that
is, F, > D produces a climb. Conversely, F, < D produces a descent and db/dt is negative.
Gliding flight is he special case when F, = 0. This simple expression also allows the careful
student to deduce the effects of altitude, weight, wind, and velocity on angle of climb
performance and rate of climb performance.

9.2.2 ANGLE OF CLIMB PERFORMANCE

As Equation 9.3 clearly shows, the flight path (or climb) angle ¥ depends on specific excess
thrust: (F, - DYW. As an aircraft with an air breathing powerplant climbs, the propulsive
thrust decreases as altitude increases. Drag remains essentially constant. Thus, there is an
absolute ceiling where ¥, = D and ¥ = 0. In other words, increasing altitude decreases
gpecific excess thrust and the climb angle.

The effect of increasing weight on angle of climb is also obvious from Equation 9.3.
Increasing weight directly reduces the climb angle because of the reciprocal relationship.

A steady wind actually has no effect on the angle of climb of an aircraft within a moving air
mass. However, the prime reason for optimizing angle of climb (or descent) is to gain
obstacle clearance during either the takeoff or landing phases of flight. The maximum climb
angle must give the most altitude gained for horizontal distance covered. Winds do affect
this horizontal distance and give apparént changes in y as depicted in Figure 9.3. Not
surprisingly, the obvious point is to always land and takeoff into a headwind if obstacle
clearance is a concern.

e
1 |
| |

AREEY

v

N \
NO

HEAD TAIL
WIND WIND WIND

FIGURE 9.3 WIND EFFECT ON CLIMB ANGLE
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Thrust curves show that excess thrust, F. - D is a function of airspeed. Figure 9.4 illustrates .
this point for the T-38. Whatever the type of propulsion - jet, turboprop, or reciprocating
engine -- the aircraft must be flown at the velocity where maximum excess thrust occurs to
achieve the maximum climb angle.

Typically, the net thrust available from a pure turbojet varies little with airspeed at a given
altitude. The J-85 operated at military thrust in the T-38, as shown in Figure 9.4a illustrates
this characteristic well. For a turbofan, that is sometimes true. Figure 9.4b shows the F100-
220 at military thrust in the F-15C. Therefore, a jet aircraft, lacking any form of thrust
augmentation, usually climbs at the velocity for minimum drag (or minimum thrust required)
to achieve the maximum angle of climb. This classical result leads to the sometimes
overemphasized notion that ¥,,, occurs at V.

8 T T

WT 10,000 LBS

STANDARD DAY M—
7 L CLEAN e

Fn(MAX)
/’//
=
L0
- 5
g Fn (MIL)
@
o 4
T
: /
- .
g 3
[0 BUFFET
XL LIMIT
- 2 Py /
\ Lomax, 4
1 G

100 200 300 400 500 600
TRUE AIRSPEED (KTS)

FIGURE 9.4a T-38 THRUST AND DRAG
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FIGURE 9.4b F-15C THRUST AND DRAG

This generalization is based on too many assumptions to be absolutely accurate. Any
variation in thrust available with airspeed obviously affects the optimum velocity for
maximum climb angle. Careful examination of Figure 9.4 reveals that in the T-38 any true
airspeed between 240 and 270 knots results in approximately the same specific excess thrust,
hence about the same y. Any large variation in thrust available with airspeed, as is
illustrated in the maximum afterburner curve for the T-38, clearly destroys the idea that vy,_,,
ahwayscmcurs\ﬁjn
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The point is that precise determination of maximum angle of climb performance depends on
specific excess thrust, which in turn requires knowledge of both airframe drag characteristics
and propulsive system characteristics. The rule of thumb that a jet aircraft should climb at
Vop for obstacle clearance can be grossly in error for thrust augmentation, turboprops, or
pisto::\u aircraft. Figure 9.4a presents the T-38 afterburner thrust curve. Notice the
characteristic shape of this curve. Depending on engine design, the maximum excess thrust
in afterburner may occur at a point higher than Vi, _ or minimum drag. Inthe caseof a
turboprop aircraft, the thrust tends to decrease with an increase in velocity as shown in
Figure 9.5, a comparison of turboprop and turbojet thrust with speed. If a drag curve were
superimposed on this figure, it could be seen that the maximum value of excess thrust might

occur at a speed less than Vip__. Again, this would depend on the exact shape of the
turboprop thrust curve.

Thrust

\\Jet

N

\Y

FIGURE 9.5 THRUST VARIATIONS WITH SPEED

Finally, a propeller driven aircraft must account for propeller efficiencies and has its own
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peculiar thrust available curve. Figure 9.6 shows a typical piston aircraft thrust and drag
‘ curve. Note the location of maximum excess thrust.

Thrust

\

. FIGURE 9.6 PISTON AIRCRAFT THRUST/DRAG CURVES

But, whether specific excess thrust is measured directly or calculated from independent
estimates of thrust, drag, and weight, this parameter determines angle of climb performance.

9.2.3 RATE OF CEIMB PERFORMANCE

Referring again to Equation 9.4, rate of climb, dh/dt, depends upon specific excess power.
The terminology is analogous to specific excess thrust, which was defined as the difference
between net thrust available and drag (or thrust required) at a specific weight. Excess power
is similarly defined as the difference between the power available to do work in a unit of time
and the work done by drag per unit of time.
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F,V = power available

DV = power dissipated by drag (or power required)

(F,-D)V _ F,V-DV _ P, -P,

w W W

88

(9.5)

Figure 9.7 shows typical P, and P, curves for a turbojet, turboprop, and piston engined
aircraft. Note the shape of the P, curve. It is formed by multiplying true airspeed (V) by the
drag value at that speed. Similarly, the P, curve was derived by multiplying V by the thrust
at that speed. For the military power turbojet, the thrust was generalized to be flat across
the airspeed spectrum. This is known as a "flat rated" engine. As the airspeed scale is
linear, the result is a straight line originating at the origin, where V = 0. The slope of the
curve is directly proportional to the magnitude of thrust. For the turboprop and piston
aircraft, thrust was not constant with speed. Therefore, the slope of the curve for P, changes
as the aircraft’s true airspeed changes.
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Altitude has an effect on rate of climb similar to its effect upon angle of climb. Rate of climb
at the absolute ceiling goes to zero because F, = D and, obviously, excess power is nil. In
military specifications, there are two other performance ceilings defined by rate of climb
performance. The service ceiling and combat ceiling are respectively the altitudes where 100
ft/min and 500 ft/min rates of climb can be maintained.

Weight affects rate of climb directly and in the same manner as it does climb angle.
Increasing weight with no change in excess power reduces rate of climb.

Wind affects rate of climb negligibly unless gradient and direction changes are large within
the air mass.’ '

True airspeed strongly affects rate of climb performance since thrust and drag are functions
of velocity themselves, and further specific excess power explicitly depends upon true
airspeed according to Equation 9.4. Figure 9.8 illustrates the typical power available and
power required for a turbojet and propeller aircraft. The propeller driven aircraft obtains
maximum rate of climb at a true airspeed close to the velocity for maximum L.D. For jet
aircraft, maximum rate of climb occurs at some higher true airspeed. Figure 9.9 compares
the power required and power available (both at military and maximum power) for the T-38.
This chart is based on Figure 9.4a. Based upon your knowledge of how P, curves are derived,
it should be obvious why the maximum (afterburner) power curve is shaped the way it is and
what effect that may have on the true airspeed for maximum excess power.
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FIGURE 9.9 T-38 RATE OF CLIMB PERFORMANCE

9.2.4 TIME TO CLIMB DETERMINATION

The climb performance parameter of most interest to the operational pilot is usually time
required to climb to a given altitude. Rates of climb discussed so far are instantaneous
values. At each altitude, there is one velocity which yields maximum rate of climb. That
value of maximum rate of cimb pertains only to that discrete altitude. Continuous variations
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in rate of climb suggest a summation through integration (see Figure 9.10)

dh

= dh =
dt SE7aE’ where.aE £(h)

or
t A
amer ]
’ ’ 9.6)

However, dh/dt is usually not available as an analytical function of altitude; hence, Equation
9.6 can rarely be integrated, except with graphical or numerical techniques.

L
dh/dt

le e e awe cwn wme o

—| |— ah

ALTITUDE, h

FIGURE 9.10 TIME TO CLIMB
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9.2.5 GLIDING PERFORMANCE

Gliding flight (F, = 0) offers a simple application of Equations 9.3 and 9.4. This special case
also leads to results that further illuminate the usefulness and importance of the velocity for
maximum L/D. Attacking the angle of descent (negative angle of climb) problem first, the
ratio of the horizontal distance covered to altitude lost defines y. As can be seen from Figure

9.11.

t
]

W cos ¥

(v}
i

W sin Y

or

= cot ¥

ol

HORIZONTAL

FIGURE 9.11 FORCES ACTING IN A GLIDE
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Equation 9.7 expresses the fact that when | y| is a minimum, | cot 7| is @a maximum.

In other words, when L/D is maximum, the maximum horizontal distance is achieved for a
given altitude loss. The trigonometric relations show that the ratio of horizontal distance
traveled to vertical distance (or horizontal velocity to vertical velocity for a constant true
airspeed descent) is equal to L/D. Hence, L/D__ gives the "best" glide ratio and is frequently
called the glide ratio.

To minimize the rate of descent in a glide, Equation 9.4 is specialized with F, = 0.

dh _ _DV

FE
(9.8)

Once again, dh/dt is a function of "power" dissipated and is not a simple function of drag.
If one assumes a parabolic drag polar, it can be shown that the velocity for minimum rate
of descent is about 25% less than the true airspeed for minimum glide angle. This result
(which will be demonstrated in homework and class discussion) means that the pilot who
tries to stretch his glide by minimizing sink rate is actually reducing the horizontal distance
covered (range) for a given loss in altitude.

Two identical sailplanes operating at different gross weights will have identical glide ratios,
since they will have the same L/D ratio. Figure 9.12 illustrates two sets of equilibrium
conditions. Note that L, > L, to support
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HORIZON

FIGURE 9.12 EFFECT OF WEIGHT ON GLIDE RATIO

the increased weight. But to obtain L/D_,, the pilot holds the same angle of attack. Thus,
to maintain the force equilibrium, he must increase speed to increase L, to L,. As the heavier
sailplane flies faster, it also generates more drag. Hence, the heavier aircraft flies faster,
arriving sooner and descending faster, but covers the same distance. This principle is the
driving influence behind jettisonable water ballast for competition sailplanes, when one of
the goals is to cover a given closed course distance in minimum time.

9.2.6 POLAR DIAGRAMS
Polar diagrams are graphical means of summarizing aircraft steady state performance. Three
conditions are assumed for any one diagram.

1. Aircraft weight is constant

2. Altitude is constant

3. Throttle setting is constant
A change in any one of these constants calls for a new diagram to describe the new steady
state. Figure 9.13 is a typical polar diagram for military thrust in a jet aircraft.
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FIGURE 9.13 MILITARY THRUST POLAR DIAGRAM

This plot represent all the combinations of vertical and horizontal velocities that the airplane
can attain in unaccelerated flight at a given altitude, throttle setting, and weight.

Point 1, for example, represents the maximum attainable level flight speed with these
conditions. Point 2 represents a steady state climb at the flight path angle (y,) indicated. A

line drawn from the origin to any point on the diagram represents vectorially the true

airspeed for that flight condition. The angle of climb for any steady state pair of velocity
components is the angle between the true "airspeed vector" and the horizontal velocity
component (x-axis). Point 3, the maximum value for rate of climb, obviously provides a lower
climb angle than Point 4. The fact that V axpc is greater than V is driven home, if one
notes the magnitudes of the true airspeed vectors for Points 3 and 4 Itis graphically clear
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from a diagram like this, one can obtain y,,, and the V.{‘m by simply drawing a line from the
origin tangent to the curve. Point 5 depicts the stalling speed. This example represents an
aircraft that is capable of climbing at military thrust when it stalls. Point 6 represents the
vertical velocity the airplane could attain if it were diving with y = 90° at military thrust.
This speed, termed the terminal velocity, is often of academic interest only because many
aircraft would break up before it could be attained. This point highlights the fact that polar
diagrams show only aerodynamic (thrust and drag) information; structural limitations,
control limitations, and other non-aerodynamic constraints are not usually noted. Finally,
the polar diagram can also have angle of attack annotations. At Point 5, the angle of attack
is o; at Point 4, o is that for best angle of climb; and at Point 6; o is the angle of attack for
zero lift. Hence, o increases as one travels in a counterclockwise direction around the polar.

Since weight, altitude, and power setting are constant, a family of curves is necessary to
describe the effect of these variables. However, since each of these variables affects
performance in a similar way, qualitatively any one of these changes can be represented by
ghifting the curve itself up or down. The power-off polar diagram, Figure 9. 14, shows the
differences in airspeed for (1) minimum glide angle, (2) minimum rate of descent, and (3)
minimum speed. The fallacy of trying to "stretch the glide" by flying slower is graphically
portrayed, since ¥,,, occurs at Point 1, where the true airspeed vector is tangent to the polar.

/—MIL THRUST

"Q\\ e ) vy

\
- PARTIAL THRUST
2 OR ABSOLUTE
3 CEILING OR HIGH

GROSS WEIGHT

POWER OFF OR
OVERWEIGHT

FIGURE 9.14 FAMILY OF POLAR DIAGRAMS
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For glider aircraft, the airspeed at Point 1is often referred to as the maximum L/D airspeed,
as it will result in the greatést distance traveled for a given altitude above the ground. Point
2 is known as the minimum sink airspeed. Flying this speed will result in the greatest time
aloft for given altitude to lose. What is the result of slowing from maximum L/D speed to
minimum sink airspeed as it pertains to descent angle, ¥? From the polar diagram, it is easy
to see that y increases. Conceptually, it is difficult to imagine how decreasing the rate of
descent increases the descent angle. The answer is in how the aircraft drag curve transforms
when changed to a P, curve. Figure 9.15 demonstrates.

Drag
\
Powers
Requi red
0 \"

Ve Vno =12 Ve

FIGURE 9.15 D AND P, CURVE COMPARISON
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Notice the relationship between the two curves. The velocity for minimum drag will be the
point at which y will be a minimum value, as

Y = sin"[;'?], assuming F, = 0

However, note that at this ?velocity the value for P, is higher than the minimum P, value.
From the expression

-DV

V, = , assuming F, = 0

notice that Vy is a minimum where P, (or -DV) is a minimum.

Hence, in order to minimize the rate of descent the aircraft must be flown at the minimum
P, velocity. But, in going back up to the drag curve it can be seen that the drag for the
minimum P, velocity has increased in comparison to the drag value at maximum L/D
(minimum drag). Therefore, the glide angle (y) will increase.

In summary, polar diagrams are handy for visualizing some of the basic concepts of steady
state climb and descent performance. Important parameters, like v, V,{Im, Vmum - are
graphically portrayed. However, because of the constraints used in their construction and
the consequent necessity to examine families of curves, polar diagrams are little used by
operators. Soaring buffs do use them in constructing "s -to-fly" charts that specify
optimum transit speeds between thermal activity. Apart from such uses where the variables
are limited by the nature of the vehicle, polar diagrams are largely useful only as a teaching

tool.

9.3 BASIC ENERGY STATE CONCEPTS

A more general approach to aircraft performance was formulated by Rutowski in the early
1950’s. His analysis is based on "the balance that must exist between the potential and
kinetic energy exchange of the aircraft, the energy dissipated against the drag, and the
energy derived from the fuel” (9.2:187). The definitions and explanations which follow are
based on and generally parallel Rutowski’s original development, though portions have been
altered to clarify and amplify the concepts.

9.3.1 ASSUMPTIONS
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There are usually four basic assumptions made for elementary energy state analyses:

1. Configuration is fixed

2. Weight is constant

3. Load factor is constant

4. Thrust lever is fixed )
The underlying reason for each of these assumptions is to reduce the complexity of the
mathematical problem. In fact, as we will see, these assumptions allow us to define an
energy state with only two variables—altitude and true airspeed. However, these
assumptions can be relaxed for specific purposes. Weight and load factor may be changed.
In general, this will be considered outside the scope of this course. Interest in these changes
should be directed toward Rutowski’s paper.

In addition to these four basic assumptions, we will be rather cavalier in this introductory
course with the interchange between different forms of energy. As a first order
approximation, we will assume that airspeed and altitude can be exchanged instantaneously
with no energy dissipation. Such processes are of course, idealized ones and would exceed
angle of attack and load factor limitations if you attempted such maneuvers. But to add such
constraints complicates the energy state approximation and obscures too many concepts for
our purposes.

9.3.2 ENERGY DEFINITIONS
The total energy of an aircraft is comprised of kinetic energy in the form of airspeed and
potential energy in the form of altitude.

E = PE + KE

(9.9)

An aircraft in a climb is increasing potential energy either by the expenditure of chemical
energy (by the powerplant) or by decreasing kinetic energy (trading airspeed for altitude).
Descents are also a change in potential energy which may or may not be accompanied by a
change in kinetic energy. Constant true airspeed descents, for example, involve a decrease
in potential energy (and therefore total energy) due to the work done by drag forces.
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9.3.3 SPECIFIC ENERGY

In analyzing climbs and accelerations for aircraft having different weights at the same
altitude-airspeed combinations, energy per pound of aircraft weight or "specific energy” is
more convenient than total energy. Equation 9.9 can be rearranged and E, defined as specific
energy.

= h +

4
"
=l

v2
Zg
(9.10).

Occasionally, E, is called "energy height" since it has units of length only: Physically, this
terminology suggest that "energy height" is the altitude the aircraft would attain if all its
kinetic energy could be converted with no loss to potential energy. Alternatively, if all the
altitude were converted to kinetic energy, the corresponding true airspeed is the maximum
speed attainable with a given specific energy level.

9.3.4 SPECIFIC EXCESS POWER
Perhaps the most important parameter in the energy methodology is obtained by
differentiating Equation 9.10 with respect to time. ‘

dEa - dh - VvV dv
gt dE Tgdt
(9.11)

It is not necessary to assume db/dt and dV/dt are zero as was done for steady state
performance analysis. However, from Equation 9.2

. wdav
F -D-W =
n sin Y= 33

Dividing through by W/V and transposing

(F, -~ D)

___.W__V=Vsin'y+

av
dat

ql <

But V sin y = dh/dt, therefore:
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dE,_(F,-D)

at 4

(9.12)

The term on the right side of Equation 9.12 is excess thrust multiplied by velocity and
normalized for weight. Since thrust times velocity is power, dE/dt may be defined as specific
excess power. We will define a new symbol for this term, P,

dE,
P, =

at

P, characterizes the engine-airframe capability to change energy levels at a given airspeed,
altitude, and power setting.

9.4 THEORETICAL BASIS FOR ENERGY
OPTIMIZATIONS |

Having defined terms and introduced the energy approach by reviewing steady state
performance considerations, a theoretical foundation for applying energy techniques must be
laid. The idea of applying powerful mathematical tools like the calculus of variations to
aircraft performance was suggested by Graham (9.2:190) in Rutowski’s original paper.
Theoreticians are still adding to our store of knowledge in applying these tools. The calculus
of variations is the branch of mathematics that provides the theoretic foundation for the
graphical tools that will be used for energy approximations. In essence, it provides a means
by which to determine a function, over a definite integral, that results in a maxima or
minima. A true understanding of the calculus of variations would require more time than
is available for this course. A firm understanding is not required to master the energy
approximation.

9.5 GRAPHICAL TOOLS FOR ENERGY
APPROXIMATION

Solutions to even the basic calculus of variations problem: are best left to optimal control
specialists. However, a number of simple graphical approximations and tools provide useful
information to designers and operational tacticians. Since the most reliable raw data to
construct these graphical tools come from flight tests, it is imperative that the test pilot and
test engineer/navigator have a working knowledge of them.
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9.5.1 SPECIFIC ENERGY OVERLAY
Having specified h and V as dependent variables, it is customary to utilize standard linearly

 sealed rectangular coordinates to depict energy states in terms of these two variables.

However, since the energy approximation requires consideration of events that take place at
levels of constant energy, a constant E, grid is commonly overlaid on the h, V axes. Figure
9.16 shows such an overlay.
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FIGURE 9.16 SPECIFIC ENERGY OVERLAY

As Equation 9.10 suggest, these lines of constant E, are parabolic segments, with the altitude
intercept (Point A) representing a body having only potential energy (V = 0). Point B, on the
other hand, represents a body having only kinetic energy (h = 0).

One of the limitations (or perhaps fallacies) of the energy approach is also apparent from
Figure 9.16. Note that time (the independent variable) does not appear on the specific energy
grid. In his original formulation, Rutowski assumed that an exchange of potential energy for
kinetic along a constant energy path could be made instantaneously. Anyone who has ever
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tried to trade airspeed for altitude recognizes this approximation as rather crude; such
maneuvers quickly exceed the assumptions of small @ and negligible normal acceleration.
Much of the work done to build on Rutowski’s concept has been aimed at optimal solutions
relaxing this impracticality (9.4:93 and 9.5:315). This simplification means that an aircraft
could ideally zoom or dive between points C and D or any other points along a constant E,
contour in zero time.
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FIGURE 9.17 ALTERNATIVE SPECIFIC ENERGY OVERLAYS

In addition to the basic representation of E, on h, V diagrams, there are several alternative
ways to display the same information. Two such alternatives are shown in Figure 9.17. The
h, M plot is a common substitution of dependent variables (M for V) for supersonic aircraft
in operationally oriented literature. Notice the "knee" in the E grid lines when they are
plotted on the h, M axes. It will be left as an exercise for the reader to show why this
discontinuity in slope arises.

Sometimes, plotting specific potential energy versus specific kinetic energy (V?/2g) is useful
in graphically obtaining the points of tangency (a procedure to be elaborated upon later). The
form of the overlay should be suited to the user’s purpose; in any case, the information is
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essentially the same. These overlays of constant E, allow one to choose paths of constant E,
or paths of known change in E,.

9.5.2 SPECIFIC EXCESS POWER PLOTS

The specific excess power plot is the basic graphical tool used to display total performance
capability of an aircraft with the energy approach. In order to understand the significance
of this plot, and how changes in certain variables affect it, a brief discussion on how to
produce the plot is required. The simplest approach is to begin with an introduction into one
of the flight test techniques, the level acceleration.

The level acceleration is but one of the techniques by which P, values may be obtained. In
theory, the pilot performs an acceleration of the aircraft at a fixed power setting (usually
military or maximum power), 1 g, and constant tapeline altitude. That is, altitude remains
constant. Hence, from Equation 9.11.

p = 9B _dh vdv
* g dE Tgdt

dh

with altitude constant, =

]
g

vdav
P = _
* ‘gdt

Now, referring back to Figure 9.7, notice that there are two points where P, = P,. And
equation 9.12 told us:

dE, _(F,-D)V

dt W
but
dES -
dt P,
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and

(9.13)

At these two points, where P, = P,, P, = 0. At each velocity between these points, P, > P, so
P, is positive and therefore the aircraft will accelerate. Outside these velocities P, is negative

and therefore the aircraft will be unable to

accelerate.

Consequently, if the aircraft is accelerated from a velocity just faster than the slow speed P,
= P, point it will eventually increase airspeed out to the high speed P, = P, point and
stabilize. A plot of true airspeed as a function of time is produced. Figure 9.18 depicts a

hypothetical data plot.
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From this plot, P, can be computed for the interval between V,; and V, using the equation ‘

v
Fe g dt

since the tapeline height was held constant. The values of AV and At, depicted on the plot,

will be used as the estimate for -gg . The average velocity (V,,,), defined as

ﬁ_i_"z , will be the actual data point of interest. Therefore, the P, value computed will

apply at that point and can be computed by substituting values into the equation. From a
qualitative stand point, knowing Equation 9.12, it can be seen that the slope of the curve in
Figure 9.18 represents the relative magnitude of excess thrust. This understanding is left
to the reader.

As the value for P, was determined for this point, so it is determined for other time intervals. .

As the airspeed stabilizes at maximum velocity, _g—g goes to zero. Hence, P, goes to zero.

At the low speed end, —g-% is low in value so P, is very low. Plotting P, versus V for each

data point gives Figure 9.19
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FIGURE 9.19 P, PLOT

For each level acceleration at a series of altitudes, a similar plot is produced. The result is
a family of P, plots for the various altitudes. Starting with the P, = 0 points, the airspeed
and altitude for each is plotted on a specific energy overlay. The result is a locus of points,
at various altitudes and airspeeds, where P, = 0. Fairing a curve through these points
produces the P, = 0 contour. The same is then accomplished for P, = 100,200,300, . . . points.
The result is typically a shown in Figure 9.20.
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FIGURE 9.20 F-16C lg SPECIFIC EXCESS POWER

The P, contour has special significance. For points outside this dividing line, the aircraft has
negative specific excess power. Hence, the P, = 0 contour represents the locus of states for
which F, = D, since the difference of these two variables is the only term in Equation 9.12
that can force P, to 0 with the aircraft in flight. At any point along the P, = 0 contour, the
aircraft has no capability to increase its specific energy, so long as throttle setting, load
factor, weight, or configuration of not change. It will, therefore, stabilize in steady state level
flight on a P, = 0 contour (state A in Figure 9.20, for example). Values of P, inside this
contour are positive, and if the aircraft were at state B, it could either climb, accelerate, or
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both at the same energy state. This aircraft could, for example, climb to an altitude of about
47,000 feet while reducing its kinetic energy to give M = 0.8. In fact, the pilot could zoom all
the way to state C (if he did not stall) with the same energy level. However, he would have
a negative P, at C and could not stabilize there. Point D also represents the subsonic
maximum h stabilized point. If there is a slight reduction in speed and the pilot increases
angle of attack in an attempt to maintain altitude, the aircraft will lose specific energy and
stabilize at some lower altitude point on the P, = 0 curve. This portion of the P, = 0 curve
is akin to the classical "back side" of the power curve. This process can occur repetitively
until the aircraft reaches stall speed. Of course, this chain of events can be broken if the
pilot reduces angle of attack (and thus, drag)-and exchanges potential energy for kinetic
energy. In other words, P, contours, and the P, = 0 contour in particular, are direct measures
of an aircraft’s capacity for climb, acceleration, and stabilized flight.

It must be emphasized that each P, contour plot is valid for only one configuration, one load
factor, one weight, and one power setting. They are also valid for one set of atmospheric
conditions, usually standard day. Increasing drag, increasing load factor, or reducing thrust
all have the effect of shrinking the P, = 0 contour as shown in Figure 9.21. Notice that this
shrinking is not a proportional shrinkage; the P, = 0 contours also change shape (distort) as
these factors change.

§ALTITUDE, h

/-Ps=0

ALTITUDE, h

/“ Pg=0 TRUE AIRSPEED, V

TRUE AIRSPEED, V

FIGURE 9.21 EFFECT OF INCREASING DRAG, INCREASING LOAD
FACTOR, OR REDUCING THRUST
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Figure 9.22 graphically portrays the changes in the P, = 0 envelope for the F-5E as load
factor increases. Notice that the 3g and 5g envelopes characteristically shrink and distort
in comparison to the 1g P, = 0 envelope. As expected, applying load factor is a very expedient
way to decrease energy rapidly. Though the contours are not shown in Figure 9.22, an
energy decay of over 2,000 ft/sec is achievable with the aircraft under load at 42,000 feet and
M = 1.2 in the F-5E. Clearly, this energy state is well within the F-5E’s g P, =0 envelope.

To round out this introduction to P, plots, note that the maximum energy level attainable is
about 96,500 feet, state F in Figure 9.20. Theoretically, this point is the state from which

-an ideal zoom to maximum altitude -or an ideal-dive to maximumspeed should begin.
However, the aircraft simply cannot reach the energy level represented by point G in Figure
9.20. But there are other factors which may further constrain aircraft performance. The P,
= 0 contour recognizes no aircraft limitations — aerodynamic, structural, or controllability;
it considers only what the engine/airframe combination is capable of producing in terms of
potential and kinetic energy. Figure 9.23 illustrates how dynamic pressure loads, inlet
temperature limits, fuel control performance, external store considerations, loss of control,
and other factors can modify the usable P, envelope.
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9.6 TIME OPTIMAL CLIMBS

9.6.1 GRAPHICAL APPROXIMATIONS TO RUTOWSKI CONDITIONS

Having now laid the theoretical groundwork (which is too complex, as usual) and developed
the graphical tools, (that are usable), one can now marry the two to obtain optimized
performance. Rutowski proposed a very easy to use graphical means of obtaining climb
schedules from P, plots (9.2:190,191). He reasoned that one obtains maximum unaccelerated
rate of climb under the mathematical conditions expressed by

9P, _
v
0P, _
<5 " °
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Perhaps we can illustrate the method starting with subsonic aircraft and its P, contours as
shown in Figure 9.18, using two different types of E, grid overlays. Holding altitude
constant, we graphically satisfy the partial differential equation

op,| _
ov

h = constant
by picking the true airspeed where the P, contour is tangent to a line of constant altitude;
that is, the peak of the P, contour. This peak for one altitude is labeled A in Figure 9.24.
The climb schedule associated with such points for each P, contour plotted is usually termed
the maximum rate of climb schedule. The term is not wholly descriptive since, though the
schedule minimizes the time to reach a given altitude, it is not necessarily unique.

MAX OPTIMUM “MAX OPTIMUM
RATE~= ENEiy

ALTITUDE, h
ALTITUDE, h

TRUE AIRSPEED, V v2

FIGURE 9.24 SUBSONIC CLIMB PATH

9.6.2 MINIMUM TIME TO ENERGY LEVEL PROFILES

In a similar vein, Rutowski suggested that the previous equations could be satisfied
graphically by choosing a point where the P, contours were tangent to lines of constant E,.
The climb schedule generated along this so-called Rutowski path represents minimum time
to achieve a given energy state. This profile is labeled "optimum energy” in Figure 9.24.

To help locate these points of tangency, it is sometimes useful to plot P, contours as a
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function of specific potential energy (h) and specific kinetic energy (V*/2g). Depending on the
shape of the redefined P, contours, the points of tangency may be easier to choose with these
straight line E, contours. Of course, it is then necessary to compute the climb schedule
(obtaining V from V?/2g), rather than reading it directly.

9.6.3 SUBSONIC TO SUPERSONIC TRANSITIONS

No matter what kind of plot is used, Rutowski suggested climbing along the optimum energy
path to C, which would put the aircraft at a specific energy level equal to that at A.
However, the aircraft’s potential energy would be lower with kinetic energy making up the
difference. Upon reaching C (in less time than that required to follow the maximum rate of
climb path to A), Rutowski assumed the aircraft would transition in zero time with no loss
in energy along an ideal zoom to A. It becomes immediately obvious why these transitions
are of such interest to Rutowski’s successors in performance optimization; the potential gains
predicted by the energy approximation can be completely negated by the real process of
exchanging kinetic and potential energies. In fact, for subsonic aircraft, the difference in the
two climb paths is usually within measurement error for flight test purposes.

However, for a supersonic aircraft, the energy approximation becomes much more
meaningful. Figure 9.25 illustrates a typical climb schedule for a supersonic aircraft. The
path essentially consists of four segments to reach energy state E in minimum time.
Segment AB represents a constant altitude acceleration from V= 0 to climb speed at state B.
The subsonic climb segment follows a path similar to the one illustrated in Figure 9.24
approximately to the tropopause (state C). As a rule of thumb, this subsonic climb is usually
a nearly constant Mach schedule. An ideal pushover or dive is then carried out at constant
E, from C to D. Finally, the supersonic climb segment from state D to KE is normally very
close to & constant calibrated airspeed climb. Notice that this path is an idealized Rutowski
path except for the takeoff and acceleration to climb speed and the ideal (zero time) dive
between states C and D. Segments BC and DE fit Rutowski’s conditions by passing through
points on P, contours that are tangent to lines of constant E,.
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FIGURE 9.25 SUPERSONIC CURVE PATH

Of course, there is a question of when and how to transition from the subsonic segment to
the supersonic segment. The P, contours near M = 1 are poorly defined, and there is not
complete agreement on when to start the pushover. Most analysts suggest flying toward the
most expeditious path toward the highest P, contour available without decreasing E,. Such
an assumption implies that one should climb subsonically until intercepting on E, level
tangent to two P, contours of equal value -- one in a subsonic region and the other in the
supersonic region. Path CD in Figure 9.25 illustrate a typical transition following this
reasoning. However, Figure 9.26 (9.6:17) illustrates rather well how difficult the choice of
transition paths becomes when P, contours become irregular in the transonic region. The
ideal climb path for the F-104G resulted in a time to 35,000 feet and M = 2.0 of about 194
seconds. This time compares to a time of 251 seconds for a subsonic climb at maximum rate
to 35,000 feet followed by a level acceleration to M = 2.0 at constant altitude (9.6:18), a gain
of 23% in time to intercept.

However, before the rosy glow gets too bright, how about the story with real transitions as
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opposed to ideal zooms and dives? Figure 9.26 shows a more realistic climb path with the
"corners rounded off' ~meaning that abrupt discontinuities in angle of attack and attitude
were avoided in the actual climb. For one supersonic airplane, the ideal minimum time path
to h = 65,000 feet and M = 1 took 277 seconds with zero time for dives and zooms. Using a
more complete mathematical model, Bryson and Desai estimated 40 seconds for the dive and
60 seconds for 